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Abstract-A new set of equations describing the growth and evaporation of stationary Iiquid dropfets in 
a mixture of pure vapour and inert gas is presented. The equations, which model the heat and mass transfer 
between the droplet and its environment, are presented in a simple algebraic form and are suitable for 
practical calculations of droplet growth at any Knudsen number and at any concentration of inert gas. In 
particular. they are not restricted to the so-called quasi-steady regime of droplet growth when the droplet 
surface temperature has relaxed to its steady-state value. The physical model on which the theory is based 
is essentially that of Langmuir but some novel features are incorporated. Thus, the velocity distribution 
functions for vapour and inert gas molecules approaching the liquid surface are assumed to correspond to 
simplified Grad thi~e~-moment dist~butions and this allows correct representation at a molecular level 
of the heat and mass fluxes at the outer edge of the Knudsen layer. In contrast to most simple models of 
condensation and evaporation, the theory predicts finite (as opposed to zero) temperature and vapour 
pressure jumps across the Knudsen layer in the continuum limit and shows that the former is directly 
proportional to the concentration of vapour present. The analysis also provides a physical interpretation 
for the origins of the reversed temperature gradient phenomenon in the Kundsen layer, an unusual feature 
predicted by more complex solutions of the Boltzmann equation itself. The transition from diffusion to 
kinetic control as the pure vapour limit is approached is atso modelled by the theory which shows that the 
range of Knudsen numbers over which this occurs is of the same order as the mole fraction of inert gas 

present. 

INTRODUCTION 

I~ELXCTING the growth and evaporation rates of 
small, spherical liquid droplets in a mixture of pure 
vapour and inert gas is a scientific problem of interest 
in a variety of technological areas including mech- 
anical engineering, chemical engineering and meteor- 
ology. In order to calculate the condensation or evap- 
oration rates of such droplets, equations are required 
describing the mass, momentum and energy transfer 
between the droplet and its surroundings and the 
literature addressing these problems at various levels 
of complexity is now very large. (For recent reviews 
see Gyarmathy [l] and Mozurkewich [Z].) Theoretical 
analysis is difficult because the equations must repre- 
sent a continuous transition through all Knudsen 
numbers from the free molecule to the continuum 
limit and must be valid for all concentrations of inert 
gas including the limiting case of pure vapour. 

In a previous paper [3], equations describing the 
quasi-steady mass and energy transfer between a 
stationary droplet and a pure vapour were presented. 
Using a simplfied Grad distribution function to repre- 
sent the molecular velocity distribution in the vapour 
near the liquid surface, it was possible to model 
the temperature jump across the Knudsen layer in the 
continuum limit in close agreement with other more 
complex analytical solutions of Bolt~ann-ty~ equa- 
tions. (Simple theories predict zero temperature jump 

in the continuum limit.) The heat and mass transfer 
rates at intermediate Knudsen numbers were obtained 
by ‘tuning’ the equations to match a numerical solu- 
tion of a model Boltzmann equation for a monatomic 
gas (although the resulting equations were not them- 
selves subject to the constraint of monatomicity). The 
condition for Onsager reciprocity was satisfied as 
required by the theory of linear irreversible thermo- 
dynamics but it was noted that such agreement is no 
guarantee of accuracy. Indeed, some well-known 
Maxwell moment solutions based on the Lees’ two 
stream Maxwellian distribution function [4,5] (which 
also satisfy the Onsager requirement), were shown to 
give results for the mass transfer equation which are at 
variance with more direct solutions of the Boltzmann 
equation. 
. The analysis of droplet growth in the presence of 
an inert gas presented below is an extension of the 
method described in ref. [3]. As in that paper, the 
focus is on the mass and energy transfer between a 
single spherical droplet and the surrounding vapour- 
gas mixture rather than on the overall dynamics of 
droplet growth itself. Consideration is first given to 
the thermodynamics and kinetics of vapourilroplet 
equilibrium. The transport processes are then dis- 
cussed from the standpoint of the theory of linear 
irreversible thermodynamics and the general form of 
the phenomenolo~cal equations describing heat and 
mass transfer is established. The coefficients of these 
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K’l 
I, 

NOMENCLATURE 

Greek symbols isobaric specific heat capacity 
diffusion coefficient 
energy how rate from droplet 
molecular velocity distribution function 
specific enthalpy 

mass and conduction heat fluxes from 
droplet 
Knudsen number. i.;2,, 
thermal conductivity of vapour--gas 
mixture 

L mm. L, 1 Lqm. L,, phenomenological 
coefficients 
mass flow rate from droplet 
Prandtl number of vapour-gas mixture. 
yRrI/(y- 1)k 
pressure 
saturation pressure at Td and rd 
conduction heat flow rate from droplet 
radial heat flux 

condensation and evaporation 
coefficients 
specific gas constant 
radius 
rate of entropy creation 
Schmidt number, q/pD 
temperature 
radial bulk velocity 
radial diffusive velocity. 

constants defining Knudsen 
continuum interface 
ratio of specific heat capacities 

I’.-P% r 
7;- T, 
dynamic viscosity of vapour- gas mixture 

mean free path 
chemical potential per unit mass 

213 511. cc,, molecular velocity components 

I’ density 
0 surface tension of liquid. 

Subscripts 
d droplet 
di internal to the droplet 
e equilibrium region 

g inert gas component 
I Knudsen-continuum interface 
IlC non-equilibrium region 
5 saturated 
\ vapour component 
% far from droplet 

+ away from droplet 
_ towards droplet. 

No subscript generally refers to the vapourgas 
mixture. 

equations can only be determined from a molecular- 
kinetic theory and, as in ref. [3], an extension of the 
well-known Langmuir model is employed. The molec- 
ular velocity distributions for the vapour and inert 
gas components are assumed to be Grad distribution 
functions as these provide physically correct repre- 
sentations of the convective and diffusive mass and 
heat fluxes at the outer edge of the Knudsen layer. 
With suitable approximations, the resulting equations 
for the interphase transfer rates can be expressed in 
simple algebraic forms which are easily programmable 
for practical calculations of droplet growth and 
evaporation. 

VAPOUR-DROPLET EQUILIBRIUM 

Consider a small spherical liquid droplet of radius 
rd at rest and at equilibrium in an infinite expanse 
of a mixture of its own vapour and an inert. non- 
condensable gas. The droplet temperature Td, internal 
pressure pd, and density fd are assumed uniform 
throughout the droplet. The vapour-gas environment 
is assumed to behave as a mixture of perfect gases, 
the specific gas constant of the vapour being denoted 
by R, and that of the inert gas by R,. The temperature 
and total pressure are denoted by p and T, respec- 

tively, and the partial pressures of the vapour and gas 
by pV and pp so that p = pV +pp. The thermodynamic 
and mechanical conditions for equilibrium are given 

by 

T= T, 

where p is the chemical potential per unit mass and o 
is the liquid surface tension. The internal pressure of 
the droplet is pd, which, for very small droplets, may 
be very much higher than the external pressure 11. 
If the effect of the partial pressure of the inert gas 
component on the chemical potential of the liquid is 
neglected (i.e. if pa1 in the second of equations (1) 
can be approximated byp, +20/r,). an approximation 
which is normally acceptable. then the second of equa- 
tions (I ) can be transformed to the alternative. 
Kelvin-Helmholtz. form 

p, = p,(T,,r,) = p,(T,, m)exp 
i 

(2) 

where ps(Td. m) is the saturated vapour pressure at 
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temperature T, for a flat liquid-vapour interface. 
Throughout the rest of the paper, pS( T,, r,,) is denoted 
simply by pS. 

From a molecular-kinetic viewpoint, the condition 
of equilibrium represents a state where the rate of 
condensation of vapour molecules arriving at the 
liquid surface is exactly balanced by the rate of evap- 
oration of molecules from the surface. Inert gas mol- 
ecules also strike the liquid surface, but play no part 
at equilibrium (apart from the small influence of pp 
on p,, noted above) as the droplet and vapour-gas 
temperatures are equal. At equilibrium, the velocity 
distribution of vapour molecules is Maxwellian and 
hence the mass condensation rate of these molecules 
QV_ is given by 

&f_ = -4ar,2q, 
J&T) 

where qC, the condensation coefficient, is defined as in 
the case of a pure vapour [3]. (Note that all fluxes are 
considered positive when they are directed away from 
the droplet.) The mass evaporation rate of vapour 
molecules is likewise given by 

where qe is the evaporation coefficient and is equal to 
qC at equilibrium, but not necessarily otherwise. The 
theory assumes that tiV+ is a function of droplet 
temperature and radius only and hence that equation 
(4) represents tiV+ even under non-equilibrium con- 
ditions. The presence of the inert gas is assumed to 
have no effect in this respect. 

IRREVERSIBLE THERMODYNAMICS OF 

CONDENSATION 

Equations (1) show that equilibrium can be dis- 
turbed in three ways. Firstly, the vapour temperature 
can be altered while maintaining the vapour partial 

pressure constant at the equilibrium value ps. 
Secondly, the vapour partial pressure can be adjusted 
while maintaining the vapour-gas temperature con- 
stant at the value T,. Thirdly, a sudden change in the 
total pressure of the vapour-gas mixture can disturb 
the condition of mechanical equilibrium. The relax- 
ation time associated with this last process is very 
short, however, and it is assumed that the third of 
equations (1) is always satisfied. 

These considerations imply that the net con- 
densation or evaporation rate depends independently 
on the temperature difference AT = (Td - T,) and the 
partial pressure difference ApV = (p-p,,), the sub- 
script cc denoting conditions far from the droplet. 
(Although departures from equilibrium can be insti- 
gated, apparently independently, by variations in 
either the mixture total pressure or the vapour mass 
fraction, it is the combined effect on the vapourpartial 
pressure which is the decisive factor affecting the rate 

of phase change.) Throughout the analysis, it is 
assumed that departures from equilibrium as mea- 
sured by IAT/T, 1 and IApv/p,,l are small. The sat- 
isfaction of these conditions is discussed in Appendix 
B of ref. [3]. 

To apply the formalism of irreversible ther- 
modynamics, an expression for the entropy pro- 
duction rate s in the dissipative region surrounding 
the droplet is required in order to identify the con- 
jugatefluxes and thermodynamic forces appearing in 
the phenomenoloyical equations. The open thermo- 
dynamic system used in deriving an expression for 
9 is shown in Fig. 1. Region D is the droplet and 
includes the surface transition layer. The bulk liquid 
is assumed to be in a quasi-equilibrium state char- 
acterized by a uniform temperature Td and internal 
pressure pdi and to be in thermodynamic equilibrium 
with the surface at all times. Region NE is a non- 
equilibrium vapour-gas region surrounding the drop- 
let. Region E is an infinite vapour-gas reservoir exter- 
nal to the system with uniform constant total pressure 
pm and temperature T,. The vapour partial pressure 
in region E is pvm. 

It is assumed that quasi-steady condensation or 
evaporation is occurring and conditions in region NE 
are time-independent. The rate of heat transfer due 
solely to thermal conduction crossing the system 
boundary in the radial outward direction is denoted 
by & The total mass flow rate of vapour (also cross- 
ing the boundary in the outward direction) is denoted 
by I%?. As shown in Appendix 1, the rate of entropy 
creation ,!$ due to irreversibilities in region NE is, 

where the fluxes J,,, and JqC are defined by 

FIG. 1. Open system for the analysis of irreversible entropy 
production. 



In equations (5) and (6). it is important to note that 
it is the heat transfer due to conduction & (rather 
than the total heat transfer as normally defined for a 
binary mixture) which is associated with the pro- 

duction of entropy. 
Equation (5) defines the conjugate fluxes and ther- 

modynamic forces for the application of Onsager’s 
theory. For linear departures from equilibrium. the 
phenomenological equations therefore take the form 

(7) 

where L,,,,,, L,,. L,,,, and L,,, are dimension- 
less phenomenological coefhcients. (The factor 
p,iX/(2nRi, T ,_.) has been introduced for convenience 

only.) 
The problem is to obtain expressions for L,,,,, L,,. 

L,,, and L,,. These cannot be determined from a 
thermodynamic analysis and must be derived from a 
molecular-kinetic model. However, Onsager’s recip- 
rocal theorem requires the equality L,,,, = &,. 

THEORIES OF DROPLET GROWTH IN 

VAPOLJR-GAS MIXTURES 

In fon~~tlating a theory of droplet condensation, 
expressions are required for the phenomenolo~cal 
coefficients L,,,,, L,X,,, L,,,, and L,, in equations (7) 
which accurately model the transfer processes at all 
Knudsen numbers and concentrations of inert gas. 
(The Knudsen number is defined as Kn = 1,!2,,. where 
i is a mean free path to be specified later.) 

Other approaches to the problem include the 
Maxwell moment methods using the Lees’ two-stream 
Maxwellian velocity distribution function pioneered 
by Sampson and Springer [4] and Shankar [5]. Unfor- 
tunately, despite the elegance and apparent uni- 
versality of the method. it now appears that the results 
are at variance with more direct solutions of the Boltz- 
mann equation 13,111. A similar type of analysis was 
performed by Sitarski and ~owakowski [t2] using 
the Grad moment method but. for reasons which are 
not clear. they obtained incorrect hehaviour in the 
free molecule timi t. 

The basis of the continuum theory (kiz -+ 0) was 
laid by J. C. Maxwell in 1877 when he derived equa- 
tions for the mass and heat fluxes assuming ther- 
modynamic equilibrium between the liquid surface 
and the vapour in direct contact with it. This bound- 
ary condition is now known to require modi~cation 
and recent theoretical research on the behaviour of 

the Boltzmann equation for a pure vapour close to a 
condensing or evaporating surface has revealed the 
presence of a temperature jump across the Knudsen 
layer ~LW in the wntinuum limit us the thickness of‘ 

thclt luyer tends to zero [6]. Such advances have not 
yet found their way into most droplet growth theories, 
with the result that the older theories are inconsistent 
under certain limiting conditions when compared with 
the predictions of more recent {but often more restric- 
tive) models. For example, it is not immediately clear 
how the correction due to Schrage 171, originally 
derived for the case of plane condensation and much 

discussed in the literature, should be adapted to the 
spherical geometry of a growing droplet at arbitrary 
Knudsen number in the presence of a carrier gas. 

Rarefied gas effects were first introduced into the 
theory by Langmuir and many later developments 
have utilized his approach. The Langmuir model. 
shown in Fig. 2, divides the flowfield into an outc~ 
region where the equations of continuum fluid mcch- 
anics apply and an inner Knudsen layer where transfer 
processes are kinetically controlled to the extent that 
intermolecular collisions are deemed unimport~lnt, 
The matching process is assumed to take place. rather 
arbitrarily. on a sphere of radius r,,+/ii,, where p is 
an unknown constant of order unity and may take 
ditferent values for the mass and energy transfer pro- 
ccsscs. The equation in most common use obtained 
by this technique is that of Fuchs and Sutugin [8] 
which compares favourably with the exccllcnt 
measurctncnts of Davis cl LII. [9. lo]. These authors 
concentrate on the mass transfer equation in the near 
isothermal situation of very low vapour concen- 
tration, but a similar approach in a more general 
context and including energy transfer has been prc- 
sentcd by Gyarmathy [I]. 

Liquid droplet (U < r . r& 

Knudsen layer (Id < i c I,) 

ContimMn region (l*CIC;-) 

(ri = rd * p I) 

FIG. 2. The Langmuir model. 
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Direct analytical or numerical solutions of the 
Boltzmann equation itself (or model versions such as 
the BGK equation), although sometimes restricted to 
a narrow class of problem, are extremely useful for 
calibrating the arbitrary constants which appear in 
the simpler theories. In this connection, the papers of 
Loyalka [13,14], Onishi and Dohara [15] and Onishi 
[16] are cited. 

Familiarity with the literature shows that most 
research has concentrated on droplet growth or evap- 
oration at the diffusion-controlled continuum or near- 
continuum limit when the vapour mass fraction is 
very low. This problem corresponds to the case of 
well-established water droplets growing or evap- 
orating in air and has obvious applications in meteor- 
ology and cloud physics. The equations derived, for 
example, by Fuchs and Sutugin [8] with minor 
amendments by Davis et al. [lo], are very accurate in 
this regime. Difficulties arise, however, both in the free 
molecule limit with large inert gas concentrations and 
in the pure vapour limit as the inert gas concentration 
tends to zero. Both these cases are of technological 
importance: the former during the early stages of 
many homogeneous nucleation processes and the lat- 
ter when condensation of almost pure vapour occurs 
in the undesirable presence of small quantities of non- 
condensable in-leakage. Under these circumstances, 
transfer processes across the Knudsen layer may 
dominate and it is important to model as accurately as 
possible the velocity distribution functions of vapour 
and gas molecules incident on the droplet surface. 

The analysis presented below is an extension of that 
described in ref. [3] and is based on the Langmuir 
model of Fig. 2. Whereas previous theories of this 
type have assumed that the velocity distribution of 
molecules approaching the surface is half-Maxwellian, 
the present analysis adopts a more realistic half-Grad 
distribution function which is fully compatible with 
the macroscopic processes of diffusion and heat con- 
duction occurring in the continuum region near the 
Knudsen-continuum interface. For the plane con- 
densation problem, a similar technique was employed 
by Pong and Moses [17], following the work of 
Labuntsov and Kryukov [18] for a pure vapour. The 
equations derived in ref. [ 171, however, are algebraic- 
ally complex and are inconvenient for practical com- 
putation. In contrast, the equations derived below 
introduce a few minor simplifications which allow 
the results to be presented in an algebraically much 
simpler closed form. The analysis is, however, only 
valid for small departures from equilibrium. 

CONTINUUM REGION ANALYSIS 

For ri < r < co, the conservation equations of con- 
tinuum fluid mechanics are valid. (Properties at the 
Knudsen<ontinuum interface are denoted by sub- 
script i and far from the droplet, where the bulk vel- 
ocity is zero, by subscript co.) Assuming steady-state 

condensation and neglecting viscous normal stresses, 
the conservation equations of mass (vapour plus gas 
and vapour alone), momentum and energy can be 
written 

;(r2pu) = 0 

$ [r"&+f41 = 0 

r’$ +(r2pu)g = 0 

;[r’pu(h+ ;)+r2q] = 0 (8) 

where u is the outward radial bulk velocity of the 
mixture, p the mixture density, pV the vapour density, 
h the mixture specific enthalpy, v, the outward radial 
diffusive velocity of the vapour and q is the outward 
radial heat flux. Neglecting thermal and pressure 
diffusion 

where D is the binary diffusion coefficient. The sum 
of the diffusive fluxes is zero, pVv, + pang = 0. 

The first two of equations (8) can be integrated 
immediately to give 

ni = 4ar2pu = 4nr2p,(u+v,) = constant (10) 

where ti is the total mass flow rate of vapour from 
the droplet. (The subscript v is disposable because the 
inert gas remains stationary.) Introducing pressures 
in favour of densities via the perfect gas equation, 
gives (without any approximation, see Appendix 2) 

&(1-F)= -47cr’(g)$(f$). (11) 

(Despite the analysis of Wagner [19], it is easier to 
work in terms of partial pressures rather than densities 
as this avoids the introduction of a term proportional 
to the temperature gradient.) 

Adopting an average total pressure and tem- 
perature and neglecting the variation of D with tem- 
perature, equation (11) may be integrated subject to 
the boundary conditions pv = pvi at r = r, and pv + 

pvm as r ~1 co. The resulting vapour partial pressure 
distribution is 

P” -Pvm 1 - exp (- &lR, T/4xrpD) 

Pvi -Pvco 1 - exp ( - niR, T/4sripD) (12) 

and the total vapour mass flow rate is 

ni = 4nri(g) In (s). (13) 
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For small departures from equilibrium, equation (12) r + cc. The solution for the temperature distribution 
reduces to is 

P\I -P> I I 

and equation ( 13) to 

T- T,, I- exp ( - kc,, /4xrk) 

T-T, 1 -exp (-Mc,,,/&r,k) 
(23) 

For small departures from equilibrium, equation (22) 
reduces to 

Approximate integration of the momentum equa- 
tion from the far field to the interface r = r, and sub- 
stitution of the perfect gas equation gives 

where R is the specific gas constant for the mixture 
and T,, is a suitably defined average temperature. 
Restricting the analysis to condensation or evap- 
oration at low Mach numbers (u,/J(2R7;) << 1) jus- 
tifies the assumption of constant total pressure every- 
where. 

The conservation of energy can also be integrated 
immediately to give, 

7 
C = ti 

i > 
hf G +4&q = constant (17) 

where l? is the total energy flow rate from the droplet. 
Neglecting diffusion thermal, the heat flux q is given 

by 

q = -k~+(h,-h,)pJ” (18) 

where k is the thermal conductivity of the vapour-gas 
mixture (assumed constant) and h, and h, are the 
partial specific enthalpies of the vapour and inert gas, 
respectively. The mixture specific enthalpy is given by 

h= ($&+(I-;)h,. (19) 

Noting that 4nr’p,r, = (1 -p,/p)hj and substituting 
(18) and (19) into (17) gives 

-4&k g = constant (20) 

which expresses the fact that the inert gas is stationary 
and the enthalpy flux is carried by the vapour alone. 
Neglecting the bulk kinetic energy flux 

l? = tic,,, T-4nr”k $ = constant (21) 

where c,,” is the isobaric specific heat capacity of the 
vapour. 

Equation (21) can be integrated subject to the 
boundary conditions T = 7: at r = r, and T + T, as 

T-T, r, 

T,-T, r’ 
(23) 

The total energy flow rate is then 

& = tic,,,T,+& = tic,,,T, +& (24) 

where & is the conduction heat flow rate at arbitrary 
radius r > r,. given by 

dT 

=4nr,k(T,-T,)-il;fc,,(T-T,,). (25) 

In summary, the mass flow rate of vapour from the 
droplet is given by equation (15) and the total energy 
flow rate by equation (24) with &defined by equation 
(25). 

THE MOLECULAR VELOCITY DISTRIBUTION 

FUNCTION 

In the region of continuum flow the vapour is in 
a non-equilibrium state and the molecular velocity 
distribution is not well approximated by a Maxwellian 
distribution function. As discussed in ref. [3], a much 
better approximation (and one that is compatible with 
the Navier-Stokes equations) is the Grad distribution 
function [20]. 

The basic Grad distribution for a single-component 
gas can be extended to represent a binary mixture of 
inter-diffusing perfect gases, see for example ref. [ 171. 
Neglecting viscous normal stresses and assuming 
spherical symmetry, the velocity distribution function 
for oupour molecules in the continuum region r > r, is 
postulated to be 

where (&,,, lVs, <,#) are the molecular velocity com- 
ponents in spherical polar coordinates, pv is the local 
vapour density, T is the temperature, qy is the con- 
tribution to the radial heat flux carried by the vapour 
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molecules, v, is the diffusive velocity of the vapour 
and u is the bulk velocity of the mixture. The cor- 
responding velocity distribution function for the inert 
gas molecules is identical to equation (26) with sub- 
script v replaced by subscript g. 

Equation (26) should be a good representation of 
the real molecular velocity distribution in the con- 
tinuum region and, in particular, it is assumed to 
apply at r = ri. It is further assumed that the dis- 
tribution function for molecules arriving at the liquid 
surface (<,, < 0, 5, < 0) is unaltered from that at 
r = ri. The justification for this assumption in the 
case of a pure vapour is discussed in ref. [3] and the 
considerations when an inert gas is present are similar. 

The velocity distribution of vapour molecules emit- 
ted from the liquid surface by pure evaporation is 
assumed to be a half-Maxwellian characterized by 
the droplet temperature Td. Vapour and inert gas 
molecules which reflect from the surface are also 
assumed to emerge with a similar velocity distribution. 
In other words, diffuse reflection with perfect thermal 
accommodation for both species is assumed. (The 
analysis can, of course, be performed with thermal 
accommodation coefficients other than unity but this 
introduces the added complication of extra unknown 
parameters for which no experimental data exist. The 
mass accommodation (or condensation) coefficient 
for the vapour is retained, however, in order to pro- 
vide a certain degree of flexibility in the final 
equations.) The velocity distributions of vapour and 
inert gas molecules at the liquid-vapour interface are 
thus specified as follows : 

(i) For the vapour for (0 < g,, < 00) 

s,+ = (2nR;Td)3i2 exp { -[‘“;E;‘“]}. (27) 

(ii) For the vapour for (- cc < {,, < 0) 

‘- = (2nR:&“’ *- 
4vi (5vr - 4) 

p,R,T, 

x 1_ (5vr-Ui)Z+5~O+5~~ [ 5R,Ti 1 
+ vvi (5vr - 4) 

[ 

7 (tvr - 4)’ + t$ + t,‘, 
R,T, T- 2R,T, I) 

xexp - 
H 

(5~r-~i)~+5&+tx$ 
2R, T I> (28) 

where pvi = pJR,T, and subscript i refers to prop- 
erties at the Knudsen-continuum interface. 

(iii) For the inert gas for (0 < C& < co) 

(iv) For the inert gas for (- co < lgr < 0) 

f,- = Qz;;)lil 1 _ qgi(tgr-4) 
pgiR,Ti 

x I_ ($-“i)2+t&+5& [ 5R, T 1 
+ vgi(5p-“i) 

[ 

7 (t*-“i>‘+t~+t& 
R,T, ?- 2R, T, I> 

xexp - H cgr - 4) * + r:o + r;+ 
2R, Ti I>. (30) 

In equation (29), pps is a density compatible with the 
boundary condition that the reflected mass flux of 
inert gas must equal the incident mass flux calculated 
from equation (30). 

KNUDSEN LAYER ANALYSIS 

The rate of mass transfer of vapour from the droplet 
surface is given by 

Ii& = q&, -(l -q,)ni,_ +Af_ = q&+ +q&_ 

(31) 

where 

% -4nr~ 

x -4xr,Z 

(32) 

(33) 

where the final form has been obtained with the help 
of equation (10) for A?. The triple integrals can be 
evaluated by substituting the relevant expression for 
the velocity distribution (equations (27)-(30)) and 
using tables of standard integrals. It shouId be noted 
that A?“+, A$“- and all similarly subscripted variables 
are considered positive when the flux is directed away 
from the droplet. 

For future reference, an expression is also derived 
for &f-, the mass flux of inert gas molecules incident 
on the droplet. This is identical to equation (33) with 
subscript v replaced by subscript g. The inert gas is 
stationary, however, the inward convective velocity 
just balancing the outward diffusive velocity, and 
hence Ui + upi = 0. Thus 

(34) 
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Substituting equations (32) and (33) into equation 
(31) gives the required equation for ni 

(35) 

Linearizing the right hand side of the equation 

, (36) 

Equation (35) is almost identical to equation (25) 
in ref. [3] (derived for the case of a pure vapour). 
the only difference being the replacement of the totai 
pressure pi by the partial pressure pv, in the final term 
on the right-hand side. When the inert gas con- 
~ntration is very low, py, z pi and the Knudsen layer 
provides the resistance to mass transfer. As the con- 
centration of inert gas is increased, phi falls below p, 
due to the increased resistance due to diffusion in the 
continuum region. 

The comments in ref. [3] following equation (25) of 
that paper concerning the relationship of the theory 
for a pure vapour with Schrage’s analysis [7] are 
equally applicable here. In the isothermal continuum 
limit (ri + TV), Schrage’s correction appears unmodi- 
fied as the bracketed term on the left-hand side of 
equation (35). In the free molecule limit (Y, -+ cx3), the 
original Hertz-Knudsen equation is recovered. The 
Schrage effect therefore decreases in importance with 
increasing Knudsen number, a conclusion which 
agrees with qualitative physical intuition. 

An expression is now derived for the total energy 
flow rate from the droplet assuming that the rotational 
and vibrational energies of polyatomic molecules are 
un~orrelated with their transIationa1 kinetic energies. 
It is also assumed that molecules reflected from the 
droplet surface emerge with a half-Maxwellian dis- 
tribution characterized by the liquid surface tem- 
perature (i.e. complete thermal accommodation). 
There are contributions to the energy flow rate from 
both the vapour and the inert gas and hence 

The first and second terms in braces represent the 
energy flow rates carried by the vapour molecules. 
The third and fourth terms represent the energy flow 
rates for the inert gas molecules. _!?_ and l?_ are the 
translational kinetic energy flow rates of vapour and 

inert gas molecules incident on the droplet. ,!$ is 
given by 

fll rY Pr. 

q.+, is the heat flux carried by the vapour molecules 
and can be written 

where qcyI is the contribution by the vapour molecules 
to the conduction heat flux at r = r,. Substituting 
equation (39) into (38) defining r&j = 4wTq,,, 

(401 

I& can be evaluated in a similar fashion. Noting 
again that M, + rl, = 0. results in 

where &,, is the contribution from the inert gas to the 
conduction heat transfer rate. 

Substituting equations (32)-(34). (40) and (41) into 
equation (37) and rearranging it gives 

where QL, = &,+iffei is the total conduction heat 
transfer rate at r = r,. (The final term of equation 
(42) has been simplified by the assumption 
c,,(T,- T,) - R,Tdj2 = - R, Td 12 corresponding to 

l(r,-T,)lr,l << 1.) 
In summary, the mass flow rate of vapour from the 

droplet is given by equation (36) and the total energy 
flow rate by equation (42). An equation for momen- 
tum conservation is not required because of the 
assumption (introduced in the previous section) that 
the distribution function for molecules incident on 
the liquid surface is unaltered from that at r = r,. 
(Intuitively, it would seem that the full set of con- 
servation equations should result in a more accurate 
solution but in practice the resulting equations are far 
too cumbersome for analytical development.) 
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THE KNUDSEN LAYER TEMPERATURE JUMP 

The interface temperature Ti can be obtained by 
equating the continuum and Knudsen layer 
expressions for ,@. Combining equations (24), (25) and 
(42) with equation (6) gives 

(43) 

where Yv and Yp are the ratios of the specific heat 
capacities for the vapour and inert gas. Equation (43) 
can be simplified by dejining a quantity Y by the 
identity 

(44) 

where R is the specific gas constant of the mixture 
and p = pi = pVi +ppi = pVm +psm is the mixture total 
pressure. y is a ‘mass flux’ weighted average of yv and 
pg and is not the same as the ratio of specific heat 
capacities for the mixture. When calculating y it is 
normally acceptable to replace pVi and ppi in equation 

(44) by pym and pgm, both these quantities being 
known at the outset. A mean free path 3, is also defined 
by the kinetic theory formula 

a = y Jt2nRT) 
2 P 

(45) 

where q is the viscosity of the vapour-gas mixture. 
Finally, a Prandtl number is dejined by 

Pr=&. (46) 

Substituting equations (44-(46) into equation (43) 
and rearranging, results in an expression for the tem- 
perature difference across the Knudsen layer (T, - TJ 

{ (1:;;;2r3 +(3;](y) 
= (ig(E)(%?) 
+(;)ts)($) J(2;RT) .I, (47) 

where Kn is a Knudsen number defined by 

Kn=&. (48) 
d 

No new physical principles have been introduced 
by rewriting equation (43) as equation (47). (In par- 
ticular, the exact location of the Knudsen-con- 
tinuum interface at r = ri has not yet been specified.) 
When calculating the value of Pr by equation (46), 
the viscosity and thermal conductivity of the mixture 
can be obtained by any suitable procedure for com- 
puting the transport properties of perfect gas 
mixtures. (Note that, in the limiting cases of pure 
vapour and pure inert gas, the values of R, y, Pr 
and 1 all become equal to the conventional, single 
component, property values.) 

Equation (47) expresses the temperature difference 
across the Knudsen layer (Td- T,) in terms of the 
overall temperature difference ( Td - T,) and the mass 
evaporation flux J,. In particular, it is evident that, 
in the continuum limit (Kn + 0, ri -+ rd) as the thick- 
ness of the Knudsen layer tends to zero, there remains 
a temperature jump across the layer which is pro- 
portional to the mass Jlux. The magnitude of the 
temperature jump in the limit Kn + 0 is 

where the second form is obtained by substituting 
equations (6) and (10). 

Most simple theories of droplet growth under con- 
tinuum conditions start from the premise Td = Ti and 
hence cannot predict the Knudsen layer temperature 
jump. Its existence has been established, however, by 
direct solution of Boltzmann-like equations, although 
currently such solutions are restricted to monatomic 
vapours in near-continuum regimes. A solution of the 
BGK equation for a mixture of a condensing vapour 
and an inert gas in the vicinity of a liquid droplet is 
given by Onishi [16]. For monatomic mixtures, his 
expression for the Knudsen layer temperature jump 
in the continuum limit (equation (4.24) of ref. [ 161) is 

Td - q 

TC.2 

_d~ C"fvv)i 

4JVU-m) 

(50) 

where dy is the temperature jump coeficient and 
depends on the molar masses (m, and mp) and relative 
concentration of the vapour and inert gas 
components. Some typical values were calculated by 
Onishi and are reproduced in Table 1. The present 
analysis gives a simple expression for dy which is 
valid also for polyatomic vapours and inert gases. 
From equations (49) and (50) 

d!f= - Jz(~)($f)(~)':*. (51) 

Values of dy computed from equation (51) with 
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Table 1. Predictions of the Knudsen layer temperature and 
vapour pressure jump coefficients in the continuum limit 

-dy -c‘ 

% ~ -dy P&T= equation - C$ equation 

w pVX (Onishi) (51) (Onishi) (56) 

0.1 
0.5 I.0 

10.0 
0.1 

1.0 1.0 
10.0 
0.1 

2.0 1.0 
10.0 

Pure vapour 

0.380 
0.162 
0.024 
0.406 
0.223 
0.041 
0.422 
0.284 
0.067 
0.447 

0.388 2.121 1.967 
0.183 2.082 1.864 
0.029 2.053 1.787 
0.403 2.124 1.974 
0.221 2.089 1.883 
0.040 2.053 1.793 
0.414 2.126 1.979 
0.260 2.097 1.902 
0.055 2.058 1.800 
0.443 2.132 I.994 

yV = yp = 5/3 are compared with those of Onishi in 
Table 1. The agreement is excellent and gives great 
confidence that the fundamental physical processes 
of condensation and evaporation are accurately 
modelled by the present theoretical treatment. 

In the absence of the inert gas component, equa- 
tions (47) and (49) become identical to equations (3 1) 
and (33) derived in ref. [3] for the case of a pure vapour. 
In this situation, p,, = p and the Knudsen layer tem- 

perature jump takes its maximum value for a given con- 
densation or evaporation rate. An increase in concentra- 

tion of inert gas corresponds to pV, < p and, according 
to equation (49), the temperature jump decreases. 

Equation (49) shows that the Knudsen layer tem- 
perature jump in the continuum limit is directly pro- 
portional to the dimensionless vapour velocity at the 
liquid surface and also to the mole fraction of vapour 
in the mixture (p,,=/p). The latter conclusion is not 
obvious from the much more complex analysis of 
Onishi [16]. The sign of the temperature jump has 
been discussed in ref. [3] and similar conclusions apply 
when an inert gas is present. In particular, the reversed 
temperature gradient phenomenon can manifest itself 
within the Knudsen layer. Thus, in quasi-steady droplet 
condensation when heat is being transferred alou_)’ from 
the droplet, the temperature may increase through the 
Knudsen layer before decreasing (in accordance with 
Fourier’s law) in the outer continuum region. This 
behaviour is shown qualitatively in Fig. 3 and graphi- 

I i i 
I I 

Continuum region ----- 

l-d l-1 Radius 

FIG. 3. Schematic diagram of the temperature distribution 
near a condensing droplet in the continuum limit. 

tally illustrates how strongly non-equilibrium is the 
molecular velocity distribution function in the 
Knudsen layer. 

THE KNUDSEN LAYER VAPOUR PRESSURE 

JUMP 

When net phase change is occurring. the vapour 

partial pressure at the Knudsen-continuum interface 
pVL differs from the (curvature corrected) droplet satu- 
ration pressure pE. Although this is not surprising for 
the case of pure vapour (momentum considerations 
reqmrmg pV, = p>,, #p,), most simple theories of 
droplet growth under continuum conditions in the 
presence of an inert gas assume the boundary con- 
dition at the droplet surface to be p\, = p_. The differ- 
ence (p,-pVL) has been referred to as the presswc 
,jump across the Knudsen layer but the terminology is 
misleading as a real pressure imbalance would violate 
the conservation of momentum. 

An expression for pbS can be obtained by equating 
the continuum and Knudsen layer expressions for hi. 
equations (1.5) and (36). Equation ( 15) is manipulated 
to a more convenient form by introducing a Schmidt 
number defined by 

(52) 

where ‘1 and p are the dynamic viscosity and density 
of the vapour-gas mixture. Introducing the definitions 
of the mean free path and Knudsen numbers from 
equations (45) and (48), together with the definition 
of the mass flux J, from equation (6) 

(p,, (unlike T,) depends on the condensation and evap- 
oration coefficients qC and q,.) 

Investigation of the Knudsen layer vapour pressure 
jump as the layer shrinks to zero thickness requires 
care in proceeding to the limit. An expression for 
(pS -pVi) in terms of the mass flux J, can be obtained 

from the second of equations (53). For the purposes 
of illustration it is assumed that yC = qC = q. Setting 
r, = r, and introducing equation (49) for (Td- T,) 
gives 
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Ps -Pvi 

1 

2-9 ---b __ 
PW 29 

An expression for the vapour pressure jump based on 
an analytical solution of the BGK equation for a 
monatomic vapour and q = 1 is given by Onishi [16] 
in the form 

PS!!. = _C* C”fvv)i 

4 JWWJ 
(55) 

PY9 

where C? is the vapour pressure jump coe~cient and 
depends on the molar masses and relative con- 
centration of the vapour and inert gas components. 
From equations (54) and <55), the present analysis 
gives, 

Values computed by Onishi [16] are compared with 
the predictions of equation (56) for yy = yp = 5/3 and 
q = 1 in Table 1. Agreement is within about 10% and 
it is evident that, with increase in inert gas concen- 
tration, similar trends are predicted by both analyses. 

The behaviour of the Knudsen layer vapour pres- 
sure jump (p,-pvi) compared with the overall pres- 
sure difference (p,--pvm) in the continuum limit can 
be found by combining equations (53) with (49). 
Assuming qC = qe = q and setting rj = r, gives, after 
some manipulation 

1.0 

where 

Pr -Pvi x _=-_ 
ps -pm 1+x 

. (-58) 

In the limiting case of pure vapour, pgm = 0, x --t 
co, and pti = pvm for any Knudsen number, however 

small. This is the kinetically controlled limit with zero 
diffusive resistance in the outer continuum layer. 
However, if the concentration of inert gas is non-zero 
(pJp # 0), then x -+ 0 as Kn + 0 and hence pvi +ps 
as ED1 -+ 0. This represents the diffusion controlled 
limit with negligible kinetic resistance across the 
Knudsen layer, Evidently, for any finite concentration 
of inert gas, the equilibrium boundary condition 
pvi = pS is justifiable providing the Knudsen number is 
su$iciently small. (Note that this conclusion is not 
in conflict with equation (54) if J, = O(Kn).) The 
transition from the kinetic to the diffusion controlled 
limit occurs in the range x = O(1) which, according 
to equation (58), corresponds to p&p,, = O(Kn). 

Figure 4 shows the variation of ~~-p”,)/(p~-p”~) 

with ~gm/~vrn computed from equation (58) for 
Knudsen numbers of 0.1, 0.01 and 0.001 (representing 
the approach to the continuum limit). The cal- 
culations were performed with the parameter values 
SC = 1, q = 1, y = S/3 and R = R,. Evidently, for 
small Knudsen numbers, only a very low con- 
centration of inert gas is required to effect the tran- 
sition from kinetic to diffusion control. 

GENERALIZED EQUATIONS FOR THE HEAT 

AND MASS FLUXES 

Equations (43) and (53) describe the heat and mass 
fluxes Jqe and J,,, in terms of the temperature differ- 
ences (?‘, - TJ and (Ti - T,) and the vapour pressure 

c 
-5 -4 -3 -2 -1 0 1 2 

log10 (Pg- /Pv=f 

FIG. 4. The Knudsen layer pressure jump computed from equation (57). 
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differences (p.-pV,) and (pV, -pvw). The equations are 
reproduced here in slightly modified forms to high- 
light their similarities. (In particular, equation (43) is 
combined with equations (44))(46) and in equation 
(53) it is assumed that qe = qc = q.) Thus 

_ (T,-r,) (P,-P\i) 
2Tx P%X 

y-t1 R (Td-T,) 
:‘-I R, 2T, 

JPRT,) Jr, 
P 2 

(59) 

As yet. the positions of the Knudsen-continuum inter- 
faces have not been specified. The subscripts m and q 
have therefore been added to r, in order to stress the 
fact that the ratios ri/rd in the heat and mass transfer 
equations may not be identical. In physical terms, this 
is an acknowledgement that the mean free paths for 
heat and mass transfer are likely to differ. The inter- 
face radii Y,, and r,q are given in terms of the two 
constants b,,, and ,G, d@ined by 

r,, 
= 1+2/$,,Kn. ;; = 1+2/e?,Kn. (60) 

rd 

Simplification of equations (59) is facilitated by defin- 
ing the following parameters : 

(61) 

A , , .4 2, B , and B, are thermodynamic properties of 
the mixture (with 7, Pr and SC defined by equations 

(44). (46) and (52), respectively). F,, F?, G, and Gz 
are functions of pm, 8, and Kn only and take the 
following limiting values : 

Kn+O: F,&G, -0.5 Fz&Gz-+ I 

Kn +cc: F,&G,-1 Fz&G,+O. 

introducing the definitions (61), equations (59) take 
the form 

where 

A mm = 

A,,= [w”] 

A 
G,B,Kn 

qm = I------ 1 2 

A,,, = G:+G,B,Ktz 

B,,, = A,A,Kn 

B, = B,B?Kn. (64) 

Equations (62) and (63) are multi-range equations 

for the mass and heat fluxes in terms of (p, -p, , ) and 
(T, - T,. ). They are valid for all Knudsen numbers 
and all concentrations of inert gas including the pure 
vapour limit. (Indeed, settingp,, = 0, R = R,, ;’ = y,, 
and Pr = Pr, generates equations (39) and (46) of ref. 
[3], derived for the case of a pure vapour.) 

Expressions for the phenomenological coefficients 

of equations (6) are easily obtained by simultaneous 
solution of equations (62) and (63). Thus 

L Aw Bm ‘4 B, mm = ~~-- -mu, 
A 

L =_~rn’l 
mq A ’ 

L,, = _ !!q+, (65) 

where A = (AmmA,+-AmqAqm). Substitution of the 
relevant expressions from equation (64) confirms that 
the Onsager reciprocal requirement (L,,, = I+,,,) is 
satisfied. 

The parameters jj,,, and /j, can only be established 
by comparison with experimental measurements of 
droplet growth rates or by comparison with solutions 
of the Boltzmann equation which include a model for 
molecular collisions. However. numerical calculations 
of the phenomenological coefficients from equations 
(65) for a wide variety of mixture conditions show a 
negligible dependence of the coefficients on p,, within 
the range 0.5 < & < 1.5. The effect of p,,, on L.,,, and 
L,, = L,,, is likewise negligible. It is only in the effect 

on L, near the pure vapour limit for Knudsen num- 

bers in the range 0.1 < Kn < 1 .O, where the choice of 
Pm is at all important. As shown in ref. [3], a value 
giving good agreement with the numerical cal- 
culations of Chernyak and Margilevskiy [ 1 I] for pure 
monatomic vapours in this region is Pm = 0.75. It 
is therefore suggested that the parameter values 
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1 y = 0.0 (pure vapour) 

0.001 0.010 0.100 l.cm 10.000 100.000 

Knudsen number 

FIG. 5. Variation of &,,,, with Knudsen number and inert gas concentration. 

fi,,, = /I, = 0.75 be adopted for practical calculations 
until further experimental or computational evidence 
is forthcoming. 

Figures 5-7 are graphs of the phenomenological 
coefficients plotted as functions of the Knudsen num- 
ber for a condensation coefficient of unity. Each 
coefficient is normalised with respect to its free mol- 
ecule limiting value at very large Knudsen number. 
Thus 

L mmm = AZ. hnqm = Lqmm = - 2) 

L wm =l3,++ 

When normalised in this way, the coefficients &,,, and 
-iss are remarkably insensitive to variations in the 
inert gas concentration and the ratio of the molar 
masses of the diffusing species. Figures 6 and 7 are 
plotted for the parameter values notated in the diag- 
rams but alternative values have little effect on the 
curves. In the free molecule limit & and &,s both 
tend to constant values and in the approach to the 
continuum limit both become directly proportional to 
the Knudsen number. The normalised coefficient _&,,,,, 

where L,,, , Lmqm and Lqqm are obtained from equa- 
tion (65) as 

lO.M)O 

FIG. 6. Variation of & = &,, with Knudsen number. 
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Pg- = asp 

I 

0.001 0.010 0.100 1.000 10.000 

Knudsen number 

FIG. 7. Variation of I$,, with Knudsen number. 

100.000 

displays more interesting behaviour as can be seen in 
Fig. 5. For a pure vapour, it remains of order unity 
over the whole range of Knudsen numbers. However, 
for very high concentrations of inert gas. mass transfer 
is governed by diffusion and Em,,, varies directly with 
the Knudsen number in the continuum regime. The 
transition from kinetic to diffusion control with 
increase of inert gas concentration can be clearly seen. 
For a given inert gas concentration, transition occurs 
over a range of Knudsen numbers of the same order 
of magnitude as p,=/p. This is-in agreement with the 
analysis leading to equation (57) and Fig. 4. 

CONCLUSIONS 

A new set of equations describing the growth and 
evaporation of stationary liquid droplets in a mixture 
of pure vapour and inert gas has been derived. The 
equations (which are in explicit. algebraic form) spec- 
ify the heat and mass transfer between the droplet and 
the vapour-gas mixture in terms of the temperature 
difference A.T = Td- T, and the vapour pressure 
difference Ap, = ps-p>, Expressions for the mass 
flux J,,, and the conductive heat flux Jqc are given by 
equations (7) with the phenomenological coefficients 

defined by equations (65). The equations are not 
restricted to the so-called quasi-strdv regime of drop- 
let growth when the droplet surface temperature has 
relaxed to its steady-state value but can also be used 
to model transient situations. The theory is valid for 
polyatomic vapours and gases at arbitrary Knudsen 
number and for any concentration of inert gas. The 
transition from diffusion to kinetic control with 
decrease in inert gas concentration at low Knudsen 
numbers is successfully described by the theory which 
predicts the transition to occur over a range of 
Knudsen numbers of the same order of magnitude as 

the mole fraction of inert gas, pgJ,/p. The case of a 
pure vapour (zero inert gas concentration) is obtained 
as a limiting case in exact ageement with an earlier 
analysis described in ref. [3]. 

Unlike most simple theories of droplet growth, the 
analysis can be used to predict many features of 
the kinetics of condensation which are usually only 
revealed by more complex solutions of the Boltzmann 
equation itself. Thus. simple and illuminating 
expressions for the Knudsen layer temperature and 
vapour pressure jump coefficients in the continuum 
limit are obtained (equations (51) and (56)) which are 
in good agreement with analytical solutions of the 
BGK equation presented in ref. [16]. An interesting 

deduction from equation (51 j is that the Knudsen 
layer temperature jump in the continuum limit is 
directly proportional to the mole fraction of vapour 
in the mixture and therefore tends to zero at high 
concentrations of inert gas. It has also been shown 
that the Knudsen layer vapour pressure jump tends 
to zero providing at least some inert gas is present 
and that the Knudsen number is sufficiently small 
to ensure that diffusion rather than kinetic control 
predominates. 

An important conclusion from the analysis is that. 
when computing droplet growth under continuuril 
conditions, it is incorrect to apply the Navier-Stokes 
equations over the whole region from the far-field to 
the droplet surface with the surface boundary con- 
ditions prescribed by ?; = T, and pVz =pb. Account 
should be taken of the Knudsen layer temperature 
and vapour pressure jumps given by equations (49) 
and (54). respectively. At high condensation or evap- 
oration rates the correction to the boundary con- 
ditions may be quite significant. 

The analysis also provides a physical interpretation 
for the origins of the so-called reoersed temperature 
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gradient phenomenop within the Knudsen layer, an 
effect predicted by solutions of the BGK and other 
Boltzmann-like equations. The phenomenon is associ- 
ated with condensation or evaporation under con- 
tinuum conditions when the mass and heat fluxes are 
in opposite directions (i.e. the normal situation for 
quasi-steady condensation or evaporation) and is an 
indication of the highly non-equilibrium nature of the 
distribution of molecular velocities close to the liquid 
surface. 
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APPENDIX 1. ENTROPY PRODUCTION RATE 

With reference to the system of Fig. 1, open to the transfer 
of mass, condensation or evaporation is assumed to be occur- 
ring under quasi-steady conditions. The small change in vol- 
ume of the droplet is accommodated by allowing the system 
boundary to expand or contract at such a rate that the 
volume, mass and thermodynamic properties of the non- 
equilibrium transition region remain constant. 

The rate of entropy production 3 due to irreversibilities 
originating in region NE is therefore given by 

s = S*+& (Al.l) 

where & is the rate of increase of the entropy of region D 
and 9, the rate of increase of entropy of fluid external to the 
system. .‘$ is composed of contributions from the bulk liquid 
and the droplet surface. In the appendix of ref. [3], it is shown 
that 

9 =1~+pdIj_!!Qf, d T,, ’ T,, ’ Td d 
(A1.2) 

Ed, V, and Me are the total (bulk liquid plus surface) 
energy, volume and mass, respectively, of the droplet. 
pdi = ud(Tdrpdl) is the chemical potential per unit mass of 
the droplet evaluated at its temperature T, and (possibly high) 
internal pressure pdl. pd = pdi-20/rd is the pressure in the 
vapour-gas mixture at the droplet surface. The rate of 
increase of entropy of the fluid external to the system is 
given by 

9, ++g I&$?& (A1.3) 
au a, ‘LI 

where &, c’, and tive are the rates of increase of energy, 
volume and mass of vapour in that region. The temperature 
and total pressure are T, and pm, and p,, = uc,(T,, pvm) is 
the chemical potential per unit mass of the vapour with 
partial pressure pvm. Note that (apart from the effect of the 
change in volume of the droplet), the inert gas does not move 
and hence there is no transfer of this component across the 
system boundary. 

By the conservation of mass, energy and volume 

&+n;r,, = 0, (41.4) 

&+_& = 0 (Al.5) 

Vdid+Vc =o. (A1.6) 

Hence 

(A1.7) 

Equation (A1.7) can be rewritten in terms of the rate of 
heat transfer crossing the system boundary by introducing 
the first law of thermodynamics. Applying this principle to 
the system of Fig. 1 (neglecting the bulk kinetic energy of 
the fluid crossing the boundary) 

&+pm~,+h&+~ = 0 (A1.8) 

where (ni = -ni,) and 0 are the rates at which mass and 
heat are transferred across the system boundary and h, is 
the specific enthalpy of the vapour-gas mixture far from the 
droplet. The heat transfer rate 0 embodies contributions 
from pure thermal conduction and also diffusion. Noting 
that the diffusive mass transfer rate is fi(l--p,,/p,), we 
have 
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Q = Q,+(h,., -h,,)(l-P,,,l’Q,W (Al.91 

where & is the heat transfer rate due solely to thermal 
conduction and h,, and h,, are the partial enthalpies of 
the vapour and inert gas. respectively. The mixture specific 
enthalpy is 

h, = (;jh,,, +(,&Iii,, (A1.lO) 

from which it follows that 

d+h7 hi = &s-h,,, A. (A1.11) 

Substituting equations (Al.8) and (Al. 11) in (Al .7) gives 

Simplification of equation (Al, 12) is exactly as described 
in ref. [3] subject to the approximations, ](Tc T-)/T, l = 
IATIT, I << 1. I(p,-_p,~,~l~,~~,~l = IAP,/P,, I << 1 and (PJPJ 
cc 1. In terms of the fluxes J,,, and J+ defined by equations 
(6), the result is 

APPENDIX 2. DERIVATION OF EQUATION (11) 

Equation (11) is so frequently quoted incorrectly in the 
literature that it is worthwhile outlining its derivation. 

Combining equations (9) and (10) gives 

(A?.I) 

From the perfect gas equations for the vapour and inert gas 
components 

Hence 

(A2.3) 

Introducing equation (AZ) gives 

Substitution in equation (AX 1) then gives equation ( I 1) 


